Section 14.2
 Limits and Continuity in Several Variables

Limits of 2-Variable Functions

Continuity of Elementary Functions, Computing Limits in the Domain

Examples of Indeterminate Forms, When the Limit Doesn't Exist

Examples of Indeterminate Forms, When the Limit Exists

1 Limits of 2-Variable Functions

Limits of Functions of Two Variables

Let $f(x, y)$ be a function of two variables. The statement

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

means that:

- The closer a point (x, y) gets to (a, b), the closer $f(x, y)$ gets to L.
- As $\|(x, y)-(a, b)\|$ approaches 0 , so does $f(x, y)-L$.
- We can make the value of $f(x, y)$ as close to L as we like by requiring that (x, y) is sufficiently close to (a, b).

Multivariable limits are more complex than single-variable limits because (x, y) can approach (a, b) from many possible directions (not just two).

Limits of Functions of Two Variables

Multivariable limits are more complex than single-variable limits because (x, y) can approach (a, b) from many possible directions (not just two).

For the limit of f to exist at (a, b) and equal L, the values of $f(x, y)$ must approach L on all these curves (and infinitely many others).

That is, $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ means that $\lim _{t \rightarrow c} f(x(t), y(t))=L$ for all parametric curves $(x(t), y(t))$ for which $\lim _{t \rightarrow c}(x(t), y(t))=(a, b)$

Limits and Continuity in Two Variables

The basic limit laws (Rogawski, §2.3) still apply to limits in two variables:

Sum Law
Product Law
Power/Root Laws

Constant Multiple Law Quotient Law

- We say that $z=f(x, y)$ is continuous at a point $(\boldsymbol{a}, \boldsymbol{b})$ if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b) .
$$

- We say that $z=f(x, y)$ is continuous on a domain \boldsymbol{D} if it is continuous at every point in D.

2 Continuity of Elementary Functions, Computing Limits in the Domain

Continuity of Elementary Functions

Just like in Calculus I, there is good news:

Elementary functions are continuous on their domains!

That is, you use Direct Substitution when functions are elementary. (An elementary function is one that can be constructed from building blocks like polynomials, rational functions, root functions, exponential, logarithmic, trigonometric, and inverse-trig functions, using arithmetic operations and function composition.)
Example 1: $\quad \lim _{(x, y) \rightarrow(-2,1)} \frac{2 x^{2}}{4 x+y}=-\frac{8}{7}$
Example 2: $\quad \lim _{(x, y) \rightarrow(2,4)}(y \arcsin (x / y))^{x}=(4 \arcsin (1 / 2))^{2}=4(\pi)^{2} / 9$

3 Examples of Indeterminate Forms, When the Limit Doesn't Exist

Determining Limits of Two-Variable Functions

How do we calculate limits when we cannot use direct substitution?
Example 3: Let $f(x, y)=\frac{x y}{x^{2}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$.
Solution: For the limit to exist, the function $f(x, y)$ must approach the same value along all curves approaching (0,0). If any two curves disagree, then the limit does not exist.

- As $(x, y) \rightarrow(0,0)$ along $y=0$:

$$
\lim _{x \rightarrow 0} f(x, 0)=\lim _{x \rightarrow 0} \frac{0}{x^{2}+0}=0
$$

- As $(x, y) \rightarrow(0,0)$ along $y=x$:

$$
\lim _{x \rightarrow 0} f(x, x)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}
$$

The limit does not exist!

Determining Limits of Two-Variable Functions

General principles for determining limits:

- In order for $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ to equal L, the function $f(x, y)$
must approach L along all paths approaching (a, b).
- If any two curves disagree, then the limit does not exist.

Warning: You cannot show that a limit exists by showing that two specific curves agree (because there could be a third one that disagrees).

Even showing that infinitely many curves agree might not be enough!

Determining Two-Variable Limits: Be Careful!

Example 4: Let $g(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$.
Solution:

- Along $x=y$:
$\lim _{x \rightarrow 0} g(x, x)=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}$.
- Along $x=-y: \lim _{x \rightarrow 0} g(x,-x)=\frac{1}{2}$. But. . .
- Along $y=0$:
$\lim _{x \rightarrow 0} g(x, 0)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1$.

The limit does not exist!

Determining Two-Variable Limits: Be Careful!

Warning: Even showing that infinitely many curves agree may not be enough to conclude that a limit exists!

Example 5: Let $g(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$. Link
Solution: We cannot plug in $(x, y)=(0,0)$ since it is not in the domain.

- Along $y=m x$ for any number m :

$$
\lim _{x \rightarrow 0} g(x, m x)=\lim _{x \rightarrow 0} \frac{m x^{3}}{x^{4}+m^{2} x^{2}}=0
$$

- Along $y=x^{2}$:

$$
\lim _{x \rightarrow 0} g\left(x, x^{2}\right)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+x^{4}}=\frac{1}{2}
$$

The limit does not exist!

4 Examples of Indeterminate Forms, When the Limit Exists

So What Do We Do Instead?

This is very frustrating. Checking all paths approaching (a, b) would be an impossible task.

Fortunately, there is one powerful trick: converting a limit to polar coordinates.

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ?}} f(r \cos (\theta), r \sin (\theta))
$$

If we can show that the value of θ does not affect the limit, we have transformed the problem into calculating one-variable limit involving r.

Typically, we need the Squeeze Theorem to show that θ does not matter.

Example 6: Let $j(x, y)=\frac{e^{x^{2}+y^{2}}-1}{x^{2}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} j(x, y)$.
Solution: To save time, we will attempt to show that the limit exists and skip checking individual paths. Converting to polar coordinates gives

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x^{2}+y^{2}}-1}{x^{2}+y^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ?}} \frac{e^{r^{2}}-1}{r^{2}}=\lim _{r \rightarrow 0^{+}} \frac{e^{r^{2}}-1}{r^{2}}
$$

We can drop the " $\theta \rightarrow$??" because θ has disappeared. This is an $0 / 0$ form, so we can apply L'Hôpital's Rule:

$$
\lim _{r \rightarrow 0^{+}} \frac{2 r e^{r^{2}}}{2 r}=\lim _{r \rightarrow 0^{+}} e^{r^{2}}=e^{0}=1
$$

Example 7: Let $h(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} h(x, y)$.
Solution: Converting to polar coordinates gives

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ?}} \frac{\left(r^{2} \cos ^{2}(\theta)(r \sin (\theta))\right.}{r^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ?}} r \cos ^{2}(\theta) \sin (\theta) .
$$

Observe that outputs of $\cos (\theta)$ and $\sin (\theta)$ are both in $[-1,1]$ for all real θ, so $\cos ^{2}(\theta) \sin (\theta)$ is as well.

Therefore, $-r \leq r \cos ^{2}(\theta) \sin (\theta) \leq r$, so

$$
\underbrace{\lim _{r \rightarrow 0^{+}}-r}_{=0} \leq \lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ? ?}} r \cos ^{2}(\theta) \sin (\theta) \leq \underbrace{\lim _{\substack{ \\r \rightarrow 0^{+}}} r}_{=0}
$$

and our limit equals 0 by the Squeeze Theorem.

Example 8: Let $k(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. Evaluate $\lim _{(x, y) \rightarrow(0,0)} k(x, y)$.
Solution: Rewrite the limit in polar coordinates.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ? ?}} \frac{r^{2}\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right)}{r^{2}}=\lim _{\substack{r \rightarrow 0^{+} \\ \theta \rightarrow ?}} \cos (2 \theta)
$$

But this very clearly depends on θ, which says literally that the value of $k(x, y)$ approaches different values along different paths to the origin.

Therefore, the original limit does not exist.

